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A spatially nonuniform superconducting phase is proposed as the electronic variational ground state for the
attractive interactions between nearest neighbors on graphene’s honeycomb lattice, close to and right at the
filling one half. The state spontaneously breaks the translational invariance of the lattice into the Kekule pattern
of bond order parameters, and it is gapped, spin triplet, and odd under the sublattice exchange. With the
increase in attractive interactions we first find the transition from the semimetallic phase into the p-Kekule
superconductor, defined as being odd under the exchange of Dirac points, with the additional discontinuous
superconductor-superconductor transition into the even s-Kekule state, deep within the superconducting phase.
Topological excitations of the Kekule superconductor and its competition with other superconducting states on
the honeycomb lattice are discussed.
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I. INTRODUCTION

Fermions on graphene’s honeycomb lattice can, in prin-
ciple, find themselves in a plethora of insulating phases, de-
pending on the relative magnitudes of different components
of a finite-range repulsive interaction, for example.1 If the net
interaction would have an attractive component, on the other
hand, there would be a variety of superconducting states
available to Dirac quasiparticles for pairing and condensa-
tion. Some of them are quite conventional: the on-site attrac-
tion would clearly favor the usual s-wave singlet pairing.2

Others are already less so; the second-nearest-neighbor at-
traction, for example, leads to an f-wave superconductor,3

which changes sign six times around the Brillouin zone. An-
other exotic superconducting state on honeycomb lattice was
argued to arise from the nearest-neighbor attraction:4 instead
of gapping the Dirac points it lowers the energy of the Dirac-
Fermi sea by effectively increasing the Fermi velocity. Only
away from half-filling does this state acquire a finite super-
conducting gap, which is then proportional to the chemical
potential. A closely related superconducting ground state was
also discussed in the context of the t-J-U model and
graphite.5 This hidden superconducting order is otherwise a
spin-singlet and even under the exchange of the two sublat-
tices and/or the Dirac points. Since the electrons in graphene
have three sets of discrete indices, the sublattice, valley, and
real spin, possible superconducting states may exhibit vari-
ous symmetries with respect to spatial and time inversions.6,7

Together with the observation of superconductivity in
graphite,8 the intricate structure of the superconducting
vortex,7,9,10 novel proximity phenomena,11 and the quantum
criticality,12,13 this makes the problem of superconductivity
in graphene or in an optical honeycomb lattice engaging
from theoretical as well as experimental points of view.

In this paper we will be concerned with the forms of the
superconducting condensate on the honeycomb lattice at, and
therefore also near, half-filling. As a convenient point of de-
parture we consider the problem of graphene with the chemi-
cal potential right at the Dirac point and with the attraction
only between the electrons residing on the nearest neighbors
of the honeycomb lattice. The motivation for studying such a

pairing interaction of a finite range comes in part from the
theories of boson-fermion mixtures in optical lattices, where
the nearest-neighbor attraction between fermions arises upon
integration over the bosonic degrees of freedom.14 Also,
since the fermions in reality certainly experience a strong
repulsion when they find themselves on the same site, the
attraction between the nearest neighbors appears to be the
simplest reasonable assumption that would still lead to pair-
ing. Our conclusion about the superconducting ground state
that arises as the BCS mean-field solution in this model is
unusual and qualitatively different from the previous study.4

Within the standard mean-field approach we find the super-
conducting state with the lowest energy to be the spin-triplet,
nonuniform condensate, which is odd under the exchange of
the two sublattices. The spatial Kekule pattern15 of bonds
between the paired electrons on nearest-neighbors has the
periodicity of 2Q� , where �Q� are the Dirac points, which
allows it to connect the two Dirac valleys and that way open
the mass gap in the Bogoliubov quasiparticle spectrum. It is
an example of Fulde-Ferrell-Larkin-Ovchinikov16,17 type of
superconducting phase appropriate to the honeycomb lattice.

We argue that the development of such a nonuniform su-
perconductor at T=0 may preempt the formation of the pre-
viously proposed hidden order, which in our approximation
we indeed find to be suppressed at all couplings. The Kekule
superconductor breaks the exact particle-number and the
spin-rotational symmetries, and exhibits three massless and
three massive modes in the ordered phase. It also rather
weakly breaks the internal and approximate U�1� symmetry
between various Kekule patterns. Near the semimetal-
superconductor transition we find the p-Kekule state, odd
under the valley exchange, to have the lowest energy, with an
additional discontinuous transition within the superconduct-
ing phase into the s-Kekule state, even under the valley ex-
change, at a stronger attractive interaction.

The target space of the Kekule order parameter is S3, the
surface of sphere in four dimensions. The topology of this
space implies that there are no stable topological defects in
our two-dimensional system and therefore presumably no
sharp finite-temperature phase transition. Explicit breaking
of the rotational symmetry, by an external magnetic field or
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the spin-orbit interaction, for instance, changes the target
space for the order parameter and restores the possibility of
topologically distinct defects. The cases of easy plane and
easy axis, introduced by the two terms mentioned above, are
both discussed. We also list all other gapped and hidden
�gapless� superconducting states on the honeycomb lattice
and briefly comment on their competition.

The paper is organized as follows. In the next section we
write the Bogoliubov de Gennes �BdG� Hamiltonian in the
Dirac form and introduce the nonuniform Kekule ansatz for
the superconducting bond order parameters. The minimiza-
tion of the mean-field energy for the simplest nonuniform
state and the resulting s-Kekule superconductor is presented
in Sec. III. In Sec. IV we discuss the competition between
the Kekule and hidden orders. In Sec. V a more general
Kekule pattern is considered, and the p-Kekule state is de-
fined. The other possible superconducting orders are dis-
cussed in Sec. VI, and the issue of topological defects and
the target space for the Kekule order parameter in Sec. VII.
Concluding remarks are given in Sec. VIII.

II. BdG-DIRAC HAMILTONIAN AND THE KEKULE
ANSATZ

Consider the usual tight-binding Hamiltonian for spin-1/2
fermions on honeycomb lattice at half-filling, with an attrac-
tive interaction between the nearest neighbors

H = Ht − V �
�x�,y��

�
�,��=↑,↓

n��x��n���y�� , �1�

Ht = t �
�x�,y��

�
�=↑,↓

u�
†�x��v��y�� + H.c., �2�

where V�0. u��x�� and v��y�� are the fermionic operators at
the two triangular sublattices of the honeycomb lattice. De-
coupling the interaction term in the particle-particle channel
yields the BdG Hamiltonian

HBdG = Ht − �
�x�,y��

�
�,��=↑,↓

�����y�,x��u��
† �x��v�

†�y�� + H.c. �3�

with the superconducting order parameters to be determined
self-consistently as

�����y�,x�� = V�v��y��u���x��� . �4�

Assuming the order parameters to be much smaller than
the bandwidth the condensation energy comes mainly from
the pairing of the quasiparticle states near the two Dirac
points. Let us form a 16-component Dirac-Nambu fermion
�= ��p ,�h��, with �p= ��p↑ ,�p↓�� and �h= ��h↓ ,
−�h↑��, and

�p�
� �q�� = �u��Q� + q��,v��Q� + q��,u��− Q� + q��,v��− Q� + q��� ,

�5�

�h�
� �q�� = �v�

†�Q� − q��,u�
†�Q� − q��,v�

†�− Q� − q��,v�
†�− Q� − q��� .

�6�

The tight-binding Hamiltonian at low energies then becomes

Ht = �
q�

�†�q��HD��q�� + O�q2� �7�

with HD as the Dirac Hamiltonian in two dimensions, which
in our construction and in the first quantization assumes a
particularly simple form

HD = �0 � �0 � i�0�iqi. �8�

Here, �0=�0 � �3, �1=�3 � �2, and �2=�0 � �1, are the
usual four-component anticommuting Hermitian gamma
matrices.1 The two-component Pauli matrices ��0 ,��	 operate
on Nambu’s, and ��0 ,�� 	 on the spin indices. We will also
define the remaining two gamma matrices as �3=�1 � �2 and
�5=�2 � �2. For convenience, hereafter we also set the
Fermi velocity vF=
3t /2=1 and the lattice spacing a to
unity.

Next, we define the Kekule ansatz for the superconducting
order parameter

����x�,y�� = �� cos�Q� · �x� + y�� + �� , �9�

1

2
��↓↑�x�,y�� + �↑↓�x�,y��� = � cos�Q� · �x� + y�� + �� , �10�

1

2
��↓↑�x�,y�� − �↑↓�x�,y��� = ��. �11�

The components of the triplet are assumed to be spatially
periodic with the periodicity of 2Q� whereas the singlet com-
ponent is simply uniform. The “angle” � parameterizes dif-
ferent spatial patterns of the order parameter. The unit cell of
the Kekule lattice is depicted in Fig. 1.

III. s-KEKULE GROUND STATE

We determine first the optimal Kekule ground state for
�=0 and then consider a more general solution. With the

FIG. 1. �Color online� The unit cell of the Kekule lattice of
superconducting bond order parameters. The red line corresponds to
� cos �, the bold line to � cos��+2	 /3�, and the thin line to
� cos��−2	 /3�. The unit cell contains six sites �blue points� and
nine bonds. When periodically arranged in a triangular lattice of
period 3 it yields the Kekule pattern.
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above ansatz the BdG Hamiltonian can be rewritten as

HBdG = Ht + �
q�

�†�q���M + M����q�� , �12�

where the two matrices appearing in the last term are

M� =�i�Re�����1 + Im�����2� � �0 � i�0�3�HD �13�

and

M = ��R+�2 + I+�1� � �2 + �I−�2 − R−�1� � �1 + �X�1 − Y�2�

� �3� � �0, �14�

where

R� =
1

2
�Re��↑� � Re��↓�� , �15�

I� =
1

2
�Im��↑� � Im��↓�� �16�

and

� = X + iY . �17�

Before proceeding with the diagonalization of the BdG
Hamiltonian it is worth pausing to register its symmetries.
The Dirac Hamiltonian commutes with N=�3 � �0 � I and
P=�3 � �0 � i�3�5, which in our representation stand for the
particle-number operator and the generator of translations. It
also commutes with IK=�0 � �0 � i�1�5, and Iuv=�0 � �0
� �2, when accompanied with the axis inversions q1→−q1,
and q2→−q2, respectively. The latter two operations repre-
sent the exchanges of the two Dirac points and the two sub-
lattices, respectively.1 HD also commutes with all three gen-
erators of rotations of electron spin, S� =�0 � �� � I. The matrix
M does not commute with N, P, and Iuv, but, for �=0 under
consideration at the moment, it does commute with IK. It
therefore represents a spatially nonuniform superconducting
condensate, which is odd under the sublattice exchange and
even under the exchange of Dirac points. We will call it the
s -Kekule superconductor. Since it violates the spin-
rotational symmetry, the matrix M represents a triplet super-
conducting state, which breaks two generators of spin rota-
tions.

The matrix M�, on the other hand, is a product of the
Dirac Hamiltonian and another matrix which, in our repre-
sentation, by itself would represent the singlet s-wave order
parameter.18 Since the two factors anticommute the presence
of the imaginary unit in Eq. �13� makes the matrix M� Her-
mitian. The matrix M� represents the hidden superconducting
order.4 This superconducting state, however, suffers from an
energetic disadvantage: since M� vanishes precisely at the
Dirac points, opening of the order parameter �� seems like
an ineffective way to lower the energy of the filled Dirac-
Fermi sea. We will argue shortly that in competition with the
Kekule triplet the hidden order is likely to be energetically
inferior. Therefore we set ��=0 for the time being, to return
to the issue of the hidden superconducting order only after
we determine the optimal triplet s-Kekule order parameters.

Setting then ��=0 one finds

�HD + M�2 = �q2 + m2���0 � �0 � I� + 2�3 � �n� · �� � � I ,

�18�

where the vector n� has the components

n� = �XR+ + YI+,YR− − XI−,R+R− + I+I−� �19�

and the mass gap is

m2 = X2 + Y2 + R+
2 + I+

2 + R−
2 + I−

2 . �20�

The mean-field ground-state energy per site of honeycomb
lattice is therefore

E

2N
=

3m2

2V
− �

s=�
� dq�

�2	�2 �q2 + m2 + 2s�n� ��1/2, �21�

where N is the number of points in the first Brillouin zone.
We also assume an ultraviolet cutoff 
 in the integral over
momenta, which is here performed only near the two Dirac
points. Differentiating with respect to �n� � immediately shows
that for any value of the mass m the minimum of energy lies
at �n� �=0. We set therefore n1=0 and n2=0. Viewed as a set of
two linear equations for the variables X and Y they will have
a nontrivial solution only if

R+R− + I+I− = 0, �22�

which also happens to be the remaining equation n3=0. The
trivial solution X=Y =0 will be discussed separately in Sec.
VII. The condition �n� �=0 yields therefore only two and not
three independent equations. The last equation then implies

��↑� = ��↓� �23�

and the remaining condition constrains the order parameter’s
phases as

�↑ + �↓ = 2� + 	 , �24�

where ��= ����exp�i���, and �= ���exp�i��. Finally, the
minimum of energy is at the value of the mass gap m=m0
determined by the gap equation

1 =
2V

3
� dq�

�2	�2

1

�q2 + m0
2�1/2 . �25�

which has a solution for V�Vc. At the minimum, after some
straightforward algebra the matrix M can be written as

M = m0��1 cos � − �2 sin �� � �sin ���1 cos��↓ − ��

+ �2 sin��↓ − ��� + �3 cos �	 � �0, �26�

where ���=m0 cos � and ��↑�= ��↓�=m0 sin �. At the mini-
mum of the energy the Kekule state has three hard and three
soft modes: the angles �� ,�↓−�� determine the preferred
spin axis for the triplet state and � is the superconducting
phase. Note that the condition for the energy minimum �n� �
=0 eliminated three out of six linearly independent matrices
that appear in the matrix M in Eq. �14�. The remaining three
matrices anticommute among themselves as well as with the
Dirac Hamiltonian and therefore enter as a sum of squares
into the expression of the ground-state energy. This quite
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generally appears to be the optimal way for the filled Dirac-
Fermi sea to lower its energy. Another example of this rule is
the emergence of the easy plane for the Néel order parameter
for the antiferromagnetic state on the honeycomb lattice in
the magnetic field.19 Further consequences of this rule for the
form of the order parameter in the presence of the terms that
break rotational symmetry will be discussed in Sec. VII.

IV. HIDDEN ORDER PARAMETER

Let us now restore the possibility of the hidden supercon-
ducting order while retaining the energy-minimum condition
n� =0. The mean-field energy per site is now modified into

E

2N
=

3�m2 + 2����2�
2V

− 2� dq�

�2	�2 �q2�1 + ����2� + m2�1/2.

�27�

In writing this expression we assumed the relative phase be-
tween the hidden and the Kekule order parameters to be 	 /2
so that the matrices M� in Eq. �13� and M in Eq. �26� anti-
commute and enter the energy expression as a sum of
squares. The relative factor of two in the first term derives
from the sum of order parameters over a Kekule unit cell
�Fig. 1�. The critical interaction for the appearance of the
s-Kekule order is therefore Vc=3	 /
, whereas for the hid-
den order, in absence of the Kekule state, it would be Vc�
=18	 /
3. Choosing the cutoff 
 even as big as unity,
which, for instance, would represent the interval of the ener-
gies over which the tight-binding density of states is approxi-
mately linear, we see that by increasing the interaction at V
=Vc the system first becomes the Kekule superconductor,
with m0�0. Upon further increase of the interaction the am-
plitude of the order parameter m0 grows and then suppresses
any appearance of the hidden order. We believe the reason
for this outcome of the competition to be quite physical:
given the choice whether to open the gap in spectrum or
increase the velocity of excitations, all the rest being equal,
the system chooses the former option as energetically pref-
erable. The reader should be warned, however, that this con-
clusion could, in principle, be overturned upon inclusion of
the states farther from the Fermi level into the energy calcu-
lation. The pure hidden order, or even the coexistence of the
two orders, seems conceivable as well. Since the presence of
the residual repulsive interactions in a real system will al-
ways broaden the single-particle states away from the Fermi
level, it is difficult to say anything more definite on this issue
beyond the low-energy approximation we employed.

We have checked, nevertheless, that our conclusion re-
mains unaltered within the present mean-field calculation
that keeps all quasiparticle states perfectly sharp, on inclu-
sion of the states from the entire first Brillouin zone. This
way we find the two critical interactions defined above to be
Vc�=3 /0.786=3.816 and Vc= ��3 /2� /0.727�=2.063, in quali-
tative agreement with the conclusion based on the linear ap-
proximation to quasiparticle dispersion. For further details of
this computation the reader should consult the Appendix.

V. p-KEKULE STATE

We turn to a general Kekule state with the parameter �
�0 next. Select the spin axis so that �↑=�↓=0 by setting the
angle �=0 in Eq. �26�. Without a loss in generality one may
choose then the order parameter � to be real and write the
BdG Hamiltonian in real space as

HBdG = �
x�1,x�2


†�x�1����0 � T� + ���1 � K��
�x�2� , �28�

where x�1 and x�2 belong to the same sublattice, and


��x�� = �u↑�x��,v↑�x� + b��,u↓
†�x��,− v↓

†�x� + b��� . �29�

b� is one of the three vectors that connect the nearest neigh-
bors of the honeycomb lattice. The elements of the connec-
tivity matrices T and K represent the uniform and Kekule
hopping integrals between the nearest neighbors, respec-
tively. By rotating �1 in the second term into �3 then, we find
that the energy of the Dirac-Fermi sea in presence of a su-
perconducting Kekule order parameter K is given by the sum
of the energies of the two copies of the Dirac-Fermi seas for
the spinless fermions: one in presence of the Kekule hopping
pattern +K and the other in the pattern −K. We have therefore
computed the energy f��� for the single copy as a function of
the parameter � at various values of the amplitude ���. The
typical result is depicted in Fig. 2. The function f��� may be
shown, in general, to be even, and periodic with the period
2	 /3, which reflects the rotational symmetry of the honey-
comb lattice. The computation shows that its absolute mini-
mum is always at �=0, in agreement with the recent work,20

and the maximum at f�	 /3�= f�	�. We then find that
2f�	 /2�� f�0�+ f�	�, as long as ����2.725. The transition
from the semimetallic phase is therefore into the supercon-

0.0 0.5 1.0 1.5 2.0

�1.035

�1.030

�1.025

�1.020

�1.015

�1.010

�1.005

�1.000

FIG. 2. �Color online� The energy per site f��� of the Dirac-
Fermi sea of spinless fermions, hopping between nearest neighbors
of the honeycomb lattice with the Kekule hopping amplitude 1
+ ���cos�Q� · �x� +y��+�� for ���=1, as a function of the parameter �.
The precise type of the Kekule superconducting order depends on
the sign of the combination f�0�+ f�	 /3�−2f�	 /6�. The points are
the computed values and the red line is our best fit −1.018
−0.0175 cos�3��+0.000248 cos�6��+O�10−5 cos�9���. This im-
plies the p-Kekule order �see the text�. The transition into the
s-Kekule state at ���=2.725 essentially corresponds to the change in
sign of the second harmonic of this function.

BITAN ROY AND IGOR F. HERBUT PHYSICAL REVIEW B 82, 035429 �2010�

035429-4



ducting Kekule phase with �=	 /2, which we therefore
name p-Kekule. For ����2.725, deep within the supercon-
ducting phase, we find �=0 solution to eventually become
energetically favorable, with a discontinuous transition be-
tween the s-Kekule and p-Kekule superconductors.

VI. OTHER SUPERCONDUCTING STATES

Let us also recognize the other gapped superconducting
states, as the possible mass terms that anticommute both with
the Dirac Hamiltonian HD and with the number operator N:
�a� the standard s-wave superconductor with the on-site pair-
ing

��†���1 cos � + �2 sin �� � �0 � i�0�3��� , �30�

which is translationally invariant, even under the valley
and/or sublattice exchange, but odd under the exchange of
spin labels �spin singlet�. �b� the f wave3

��†���1 cos � + �2 sin �� � �� � i�0�5��� , �31�

which is translationally invariant, even under the sublattice
and spin exchanges �spin triplet�, but odd under valley ex-
change. �c� The p-Kekule state discussed in the previous sec-
tion written explicitly is

��†���1 cos � + �2 sin �� � �� � i�1�2��� . �32�

One can further construct all the gapless �hidden� conden-
sates, as

i��†MHD�� , �33�

where M is a mass matrix for any of the above gapped su-
perconducting states. Choosing the matrix M to correspond
to the s-wave superconductor yields the original hidden order
of Ref. 4. Since the Hermitian matrix iMHD by construction
then anticommutes with the Dirac Hamiltonian HD while at
the same time being proportional to it, its addition to HD will
effectively only renormalize the velocity of the Bogoliubov
excitations, as manifest in Eq. �27�.

Of course, one can imagine many other matrices that do
not commute with the number operator, and will therefore
represent some superconducting order, which nevertheless do
not fall into any of the categories listed above. These fail to
anticommute with the Dirac Hamiltonian, and as such neither
gap out, nor increase the velocity of the Dirac fermions. De-
velopment of these order parameters would not therefore be
particularly energetically advantageous, which is the reason
behind their omission here.

One can expect the gapped superconducting states to
compete in the phase diagram for attractive interactions in a
close parallel with the competition between insulators when
the interactions are repulsive.1 As an illustration, in Fig. 3 we
present the mean-field phase diagram in presence of both the
on-site and the nearest-neighbor attractions at half filling. In
analogy with the insulating case, there is a discontinuous
transition between the ordered phases whereas the transitions
out of the semimetallic phase may be expected to be
continuous.12,13 One novel feature is that because of the U�1�
symmetry in the superconducting phase the matrices repre-

senting different superconducting states can be chosen so as
to anticommute. Consider the above p-Kekule state with the
phase �=0 and the spin axis along z direction, for example.
Choosing the uniform s-wave state with �=	 /2 makes the
two representative mass-matrices anticommuting so that
right at the boundary between the two phases the system
acquires a larger symmetry O�5�. Adding the third axis for
the second-nearest-neighbor attractive interaction introduces
then a region of the f-wave order with the discontinuous
transitions between any two of the three phases. Interest-
ingly, there is a unique anticommuting f-wave state with
�=	 /2 and with the spin axis along z direction that may be
added to the above combination of the already anticommut-
ing Kekule and s-wave order parameters. At the point in the
phase diagram where the three phases would meet, an even
larger, O�6�, symmetry emerges.

If the preferred nonuniform superconducting state is the s
Kekule, on the other hand, the possible anticommuting states
are again the uniform s wave and f wave condensates but
this time both with the same phase as the one of the s-Kekule
state.

VII. TOPOLOGY AND DEFECTS

In the ordered phase, the mass matrix for the Kekule order
parameter in Eq. �26� lives on the S1�S2 target space but
with opposite points identified. In other words, the order pa-
rameter space is the product of S2 for the spin direction and
half of S1 for the superconducting phase, which is equivalent
to S3, the sphere in four dimensions. That this is indeed the
target space becomes clear upon recalling that the minimum
with n� =0, the mean-field free energy in Eq. �21� depends
only on the mass m2= ���2+ ��↑�2, where the two complex
order parameters � and �↑ are constrained only by the con-
dition that m is the solution of the gap equation.

Since the first and the second homotopy groups of S3 are
trivial, 	1�S3�=	2�S3�=1, there are no stable topological de-
fects, and the massless fluctuations in the ordered phase
should be correctly described by the O�4� nonlinear sigma

U

UC

V

VC

1

1

SM

S �waveSC

Kekule � SC

FIG. 3. The schematic T=0 phase diagram in the model with the
on-site �U� and the nearest-neighbor �V� attractions. At the bound-
ary between the two superconducting states the order parameter
acquires the larger O�5� symmetry, as the energy becomes invariant
under the rotations of the Kekule into the s-wave order with the
relative phase of 	 /2.

UNCONVENTIONAL SUPERCONDUCTIVITY ON HONEYCOMB… PHYSICAL REVIEW B 82, 035429 �2010�

035429-5



model.21 We therefore do not expect a true finite-temperature
phase transition from a semimetal into the Kekule supercon-
ductor, but only a crossover when the superconducting cor-
relation length ��exp�cm0 /T�, with c as a �nonuniversal�
numerical constant, reaches the size of the sample.22

A reduction of the rotational symmetry would change the
target space and allow stable vortex excitations. Let us con-
sider the case of a possible easy plane first. Such an aniso-
tropy may be introduced most simply by placing the Kekule
superconductor into a magnetic field. The Zeeman term rep-
resenting the coupling of the magnetic field to the electron
spin will be proportional to the generator of rotations along
the direction of the magnetic field, �0 � �3 � I, for example.
Since this matrix commutes with the Dirac Hamiltonian and
with the third term in the Kekule mass matrix M in Eq. �14�
that is proportional to �, while it anticommutes with the two
other terms in M that are proportional to ��, the minimiza-
tion of the energy in the presence of Zeeman coupling is
formally equivalent to the problem of Néel ordering in
graphene catalyzed by the magnetic field.19,23 The result is
that �=0 since that way the Kekule mass matrix anticom-
mutes with the Zeeman term. The way to understand this
physically is to realize that in such a state the spins of paired
electrons are all orthogonal to the magnetic field so it be-
comes easier for them to tilt and provide a finite magnetiza-
tion in the field direction. The minimum condition n� =0 then
translates into ��↑�= ��↓�, the same as without the magnetic
field, but without a further constraint on the phases of the
two complex order parameters. The s-Kekule mass matrix in
Eq. �14� for such an easy plane may be then rewritten differ-
ently as

M = m0
�2 cos
�↑ + �↓

2
+ �1 sin

�↑ + �↓
2

�
� 
�2 cos

�↑ − �↓
2

+ �1 sin
�↑ − �↓

2
� � �0. �34�

The target space with the easy plane anisotropy is thus S1
�S1 with the factors corresponding to the two phases �↑ and
�↓. Since the first homotopy group of S1 is nontrivial,
	1�S1�=Z, there are different types of topologically distinct
vortex excitations. For example, winding just one of the
phases by 2	 causes both ��↑+�↓� /2 and ��↑−�↓� /2 to
change from zero to 	, i.e., both the first, phase term, and the
second, spin-axis term in the above matrix make half a
circle. This is sometimes referred to as “half-vortex.”24 On
the other hand, winding both the phases �↑ and �↓ in the
same sense by 2	 leaves the angle of the spin-axis intact,
and produces the standard full vortex in the superconducting
phase. Finally, winding the two phases �↑ and �↓ in the
opposite sense by 2	 produces a third type of vortex, this
time in the direction of the spin axis only.

An easy axis, on the other hand, is introduced by the
spin-orbit coupling, for example. Consider adding a weak
perturbation to the Dirac Hamiltonian proportional to �3
� �3 � i�1�2, which in our representation corresponds to the
third component of the spin-triplet version of the time-
reversal symmetry breaking mass, introduced by Haldane25

and discussed in the context of spin-orbit interaction in

graphene by Kane and Mele.26 The presence of such a term
would again select the piece of the Kekule mass matrix that
anticommutes with it, but due to the �3 matrix in the first,
Nambu’s factor, this now implies that �↑=�↓=0. The
s-Kekule matrix assumes the form as in Eq. �26�, with �=0.
The target space therefore in this case reduces to the usual
S1, with only the standard vortices as the topological excita-
tions. The internal structure of such a vortex has been studied
in Ref. 7. Finally, it should be understood that we discussed
the breaking of the rotational symmetry in the s-Kekule state
for simplicity only and that everything said applies equally to
the p-Kekule state as well.

VIII. SUMMARY AND DISCUSSION

To summarize, we introduced the nonuniform supercon-
ducting state on graphene’s honeycomb lattice and argued
that it is the mean-field solution of the simple model with
nearest-neighbor attraction. The order parameter for this state
lives on the bonds of the lattice and forms the Kekule lattice
with the period three. Competition between different such
Kekule superconducting states, as well as between the
Kekule and the other possible gapped and gapless supercon-
ducting states was discussed. The Kekule superconductor has
a spin-triplet order parameter, which lives on the surface of
the S3 sphere. Target spaces for the order parameter and the
topological defects in presence of some simple symmetry
breaking terms were determined.

A Kekule insulator which breaks the translational invari-
ance of the honeycomb lattice has been previously proposed
and discussed in literature.15,27 However, it appears that this
state is not the ground state of the simplest model with only
the nearest-neighbor repulsion since there is an energetically
superior charge-density wave that breaks the sublattice ex-
change symmetry available. This should be contrasted with
the situation for the attractive interactions considered here,
where the competing superconducting state is the gapless
superconductor, which we argued should have a higher en-
ergy. It was argued recently, however, that the Kekule insu-
lator does become the mean-field ground state when there is
a balance between the nearest-neighbor and the second-
nearest-neighbor components of the repulsive interactions.20

We described here only the problem at half-filling in de-
tail, where a finite interaction is needed to cause the super-
conducting transition. At a finite chemical potential the den-
sity of states at the Fermi level also becomes finite and there
is the usual BCS instability at an infinitesimal attraction. For
small deviations from the half-filling, however, the symmetry
of the superconducting state is essentially determined by the
solution at the Dirac point. For the nearest-neighbor attrac-
tion as the dominant component of the interaction one should
therefore expect the nonuniform Kekule state we discussed
to persist at a finite doping as well. As long as the Fermi
surface around the Dirac points stays circular28 the states
with the momenta Q� +q� and Q� −q� may both be near the
Fermi surface and be paired up by the Kekule order param-
eter with the momentum 2Q� , essentially the same way as
right at half-filling.
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APPENDIX

Here we determine the susceptibilities for the hidden and
Kekule orders used at the end of Sec. IV, evaluated over the
whole Brillouin zone. For the hidden order the energy per
site may be written as

E����
2N

= 
 3

V
−

1

2N
�

k�
�f�k��������2 + O�����4� , �A1�

where

f�k�� = �
i=1,2,3

eik�·b� i �A2�

and b� i are the three vectors connecting the nearest neighbors
on the honeycomb lattice.1 The sum over the wave vectors is

performed over the entire Brillouin zone with N points. We
find

1

2N
�

k�
�f�k��� = 0.786 �A3�

in agreement with Ref. 20. This yields the value of Vc� cited
in the text.

For the critical interaction for Kekule order we need the
energy as a function of the Kekule mass m to the leading
order. Diagonalizing the six-dimensional matrix given by
Weeks and Franz20 and summing over the reduced Brillouin
zone for the Kekule lattice we find

E�m�
2N

= 
 3

2V
− 0.727�m2 + O��m�3� . �A4�

Note that the electronic susceptibilities for the hidden and
Kekule orders are rather close numerically, and the Kekule
state wins mainly due to the geometrical factor of two in the
first term in the mean-field energy.
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